Successioni di blow-up e limiti di blow-up

1. Riscalamenti 1-omogenei

Siano Ω un aperto in \mathbb{R}^d e u un minimo locale di \mathcal{F} in Ω . In particolare, $u \geq 0$ in Ω e $u \in H^1_{loc}(\Omega)$. Per ogni $x_0 \in \Omega$ tale che $u(x_0) = 0$ scegliamo un raggio ρ tale che $B_{\rho}(x_0) \subset \Omega$. Definiamo

$$u_{r,x_0}(x) := \frac{u(x_0 + rx)}{r}.$$

Allora, per ogni R > 0, la famiglia u_{r,x_0} è uniformemente Lipchitziana su B_R . Inoltre, le funzioni u_{r,x_0} sono minimi locali di \mathcal{F} in B_R .

Definizione 1. Diciamo che una funzione $u_0 : \mathbb{R}^d \to \mathbb{R}$ è un blow-up di u in x_0 , se esiste una successione $r_n \to 0$ tale che u_{r_n,x_0} converge a u_0 uniformemente su ogni B_R .

Osservazione 2. Ogni blow-up u_0 è una funzione non-negativa, Lipschitz continua su \mathbb{R}^d e armonica su $\{u_0 > 0\}$.

Osservazione 3. Se una successione di blow-up u_{r_n,x_0} converge a u_0 , allora, per ogni R > 0, u_{r_n} converge a u_0 debole- $H^1(B_R)$. Inoltre,

$$\int_{B_R} |\nabla u_0|^2 \, dx \leq \liminf_{n \to \infty} \int_{B_R} |\nabla u_{r_n, x_0}|^2 \, dx \qquad e \qquad \left| \{u_0 > 0\} \cap B_R \right| \leq \liminf_{n \to \infty} \left| \{u_{r_n, x_0} > 0\} \cap B_R \right|.$$

2. Convergenza forte delle successioni di blow-up

Proposizione 4. Siano Ω un aperto in \mathbb{R}^d e u un minimo locale di \mathcal{F} in Ω . Sia $x_0 \in \Omega$ un punto tale che $u(x_0) = 0$. Sia

$$u_n(x) := u_{r_n, x_0}(x) = \frac{u(x_0 + r_n x)}{r}$$

una successione di blow-up che converge a $u_{\infty}: \mathbb{R}^d \to \mathbb{R}$ uniformemente in ogni palla B_R . Allora, per ogni R > 0, u_n converge forte- $H^1(B_R)$ alla funzione u_{∞} e $\mathbb{1}_{\Omega_n}$ converge a $\mathbb{1}_{\Omega_{\infty}}$ in $L^1(B_R)$, dove

$$\Omega_n := \{u_n > 0\} \qquad e \qquad \Omega_\infty := \{u_\infty > 0\}.$$

Proof. Per ogni $\varepsilon > 0$ consideriamo una funzione $\varphi \in C_c^{\infty}(B_R)$ tale che

$$\varphi = 1$$
 su $B_{R-\varepsilon}$, $0 \le \varphi \le 1$ su B_R .

L'ottimalità di u_n implica che

$$\begin{split} \int_{B_R} |\nabla u_n|^2 \, dx + |\{u_n > 0\} \cap B_R| &\leq \int_{B_R} \left| \nabla \left((1 - \varphi) u_n + \varphi u_\infty \right) \right|^2 dx + \left| \left\{ (1 - \varphi) u_n + \varphi u_\infty > 0 \right\} \cap B_R \right| \\ &\leq \int_{B_R} \left| \nabla \left(u_n + \varphi (u_\infty - u_n) \right) \right|^2 dx + |\{u_\infty > 0\} \cap B_{R-\varepsilon}| + |B_R \setminus B_{R-\varepsilon}|. \end{split}$$

Ora, osserviamo che

$$\int_{B_R} \left| \nabla \left(u_n + \varphi(u_\infty - u_n) \right) \right|^2 dx = \int_{B_R} |\nabla u_n|^2 dx + 2 \int_{B_R} \nabla u_n \cdot \nabla \left(\varphi(u_\infty - u_n) \right) dx + \int_{B_R} \left| \nabla \left(\varphi(u_\infty - u_n) \right) \right|^2 dx.$$

Di conseguenza,

$$\int_{B_R} (2\varphi - \varphi^2) |\nabla (u_n - u_\infty)|^2 dx + |\{u_n > 0\} \cap B_R| \le |\{u_\infty > 0\} \cap B_{R-\varepsilon}| + |B_R \setminus B_{R-\varepsilon}|.$$

Passando al limite per $n \to \infty$ otteniamo che

$$\lim_{n \to \infty} \int_{B_R} (2\varphi - \varphi^2) |\nabla (u_n - u_\infty)|^2 dx = 0.$$

In particulare, u_n converge a u_{∞} forte- $H^1(B_{R-\varepsilon})$. Inoltre,

$$\limsup_{n \to \infty} |\{u_n > 0\} \cap B_R| \le |\{u_\infty > 0\} \cap B_{R-\varepsilon}| + |B_R \setminus B_{R-\varepsilon}|.$$

Passando al limite per $\varepsilon \to 0$, otteniamo

$$\limsup_{n \to \infty} |\{u_n > 0\} \cap B_R| \le |\{u_\infty > 0\} \cap B_R|$$

e quindi

(1)
$$\lim_{n \to \infty} |\{u_n > 0\} \cap B_R| = |\{u_\infty > 0\} \cap B_R|.$$

A meno di estrarre una sottosuccessione, sappiamo che $\mathbb{1}_{\{u_n>0\}}$ converge debolmente in $L^2(B_R)$ a una funzione $g \in L^2(B_R)$. In particolare,

$$\lim_{n \to \infty} \int_{B_R} \mathbb{1}_{\{u_n > 0\}} \, dx = \int_{B_R} g(x) \, dx.$$

Quindi, usando la disuguaglianza

$$\liminf_{n\to\infty} \mathbb{1}_{\{u_n>0\}} \ge \mathbb{1}_{\{u_\infty>0\}},$$

otteniamo che per ogni insieme misurabile $A \subset B_R$

$$\int_A g(x) \, dx = \lim_{n \to \infty} |\{u_n > 0\} \cap A| \ge |\{u_\infty > 0\} \cap A| = \int_A \mathbb{1}_{\{u_\infty > 0\}}(x) \, dx.$$

In particolare, per ogni $B_r(x_0) \subset B_R$ abbiamo

$$\int_{B_r(x_0)} g(x) \, dx \ge \int_{B_r(x_0)} \mathbb{1}_{\{u_\infty > 0\}}(x) \, dx.$$

Se x_0 è un punto di Lebesgue sia per g che per $\mathbb{1}_{\{u_\infty>0\}}$, passando al limite per $r\to 0$ otteniamo

$$g(x_0) \ge \mathbb{1}_{\{u_\infty > 0\}}(x_0).$$

D'altra parte, (1) implica che

$$\int_{B_R} g(x)\,dx = \lim_{n\to\infty} \int_{B_R} \mathbbm{1}_{\{u_n>0\}}\,dx = \int_{B_R} \mathbbm{1}_{\{u_\infty>0\}}\,dx$$

e quindi

$$g \equiv \mathbb{1}_{\{u_{\infty}>0\}}$$
 q.o. in B_R .

Abbiamo quindi che la successione $\mathbb{1}_{\{u_n>0\}}$ converge a $\mathbb{1}_{\{u_\infty>0\}}$ debole- $L^2(B_R)$. Ora, usando di nuovo (1) abbiamo che

$$\lim_{n \to \infty} \| \mathbb{1}_{\{u_n > 0\}} \|_{L^2(B_R)} = \| \mathbb{1}_{\{u_\infty > 0\}} \|_{L^2(B_R)}.$$

La convergenza è quindi forte in $L^2(B_R)$.

3. Ottimalità dei blow-up

Proposizione 5. Siano Ω un aperto in \mathbb{R}^d e u un minimo locale di \mathcal{F} in Ω . Siano $x_0 \in \Omega$ un punto tale che $u(x_0) = 0$ e u_0 un blow-up di u in x_0 . Allora, u_0 è un minimo locale di \mathcal{F} in \mathbb{R}^d .

Proof. Sia

$$u_n := u_{r_n,x_0}$$

una successione di blow-up che convegre a u_0 uniformemente in B_R e forte in $H^1(B_R)$, per ogni R > 0. Sia ora R > 0 un numero fissato e $v \in H^1_{loc}(\mathbb{R}^d)$ tale che $u - v \in H^1_0(B_R)$. Sia φ una funzione tale che

$$\varphi = 1$$
 in B_R , $\varphi = 0$ in $\mathbb{R}^d \setminus B_{R+\varepsilon}$.

Usando l'ottimalità di u_n , abbiamo che

$$\int_{B_{R+\varepsilon}} |\nabla u_n|^2 dx + |\{u_n > 0\} \cap B_{R+\varepsilon}| \le \int_{B_{R+\varepsilon}} |\nabla ((1-\varphi)u_n + \varphi v)|^2 dx + |\{(1-\varphi)u_n + \varphi v > 0\} \cap B_{R+\varepsilon}|$$

$$\le \int_{B_{R+\varepsilon}} |\nabla ((1-\varphi)u_n + \varphi v)|^2 dx + |\{v > 0\} \cap B_R| + |B_{R+\varepsilon} \setminus B_R|.$$

Passando al limite per $n \to \infty$, otteniamo

$$\int_{B_{R+\varepsilon}} |\nabla u_{\infty}|^2 dx + |\{u_{\infty} > 0\} \cap B_{R+\varepsilon}| \le \int_{B_{R+\varepsilon}} |\nabla ((1-\varphi)u_{\infty} + \varphi v)|^2 dx + |\{v > 0\} \cap B_R| + |B_{R+\varepsilon} \setminus B_R|$$

$$= \int_{B_{R+\varepsilon}} |\nabla v|^2 dx + |\{v > 0\} \cap B_R| + |B_{R+\varepsilon} \setminus B_R|.$$

Passando al limite per $\varepsilon \to 0$, otteniamo

$$\int_{B_R} |\nabla u_{\infty}|^2 dx + |\{u_{\infty} > 0\} \cap B_R| \le \int_{B_R} |\nabla v|^2 dx + |\{v > 0\} \cap B_R|.$$